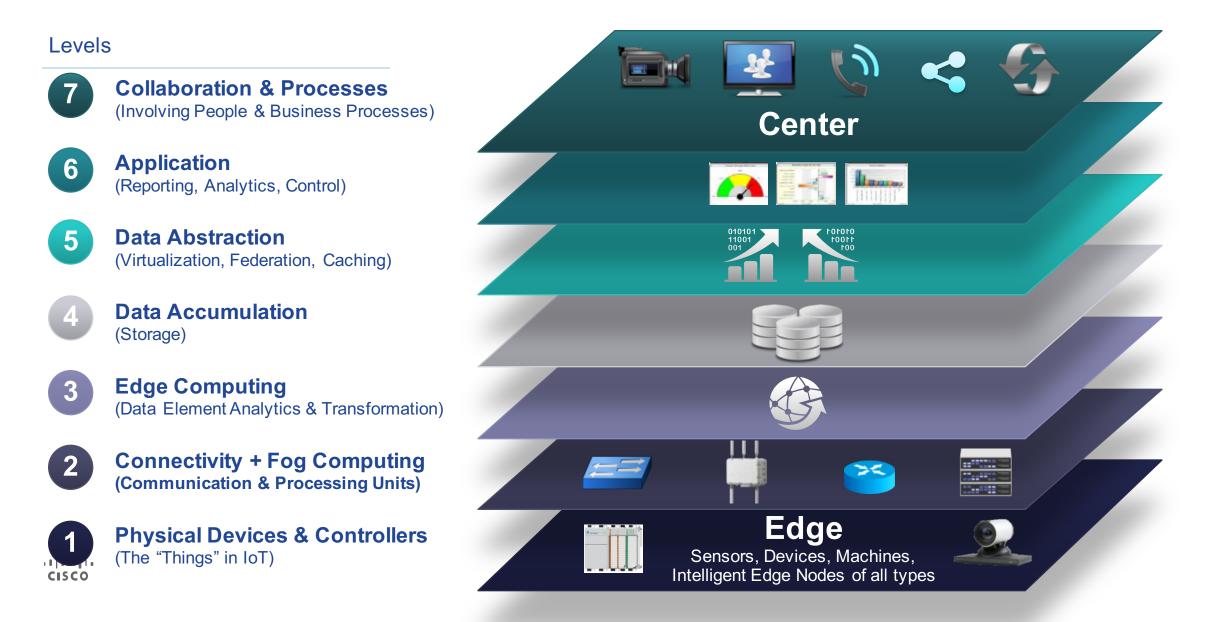
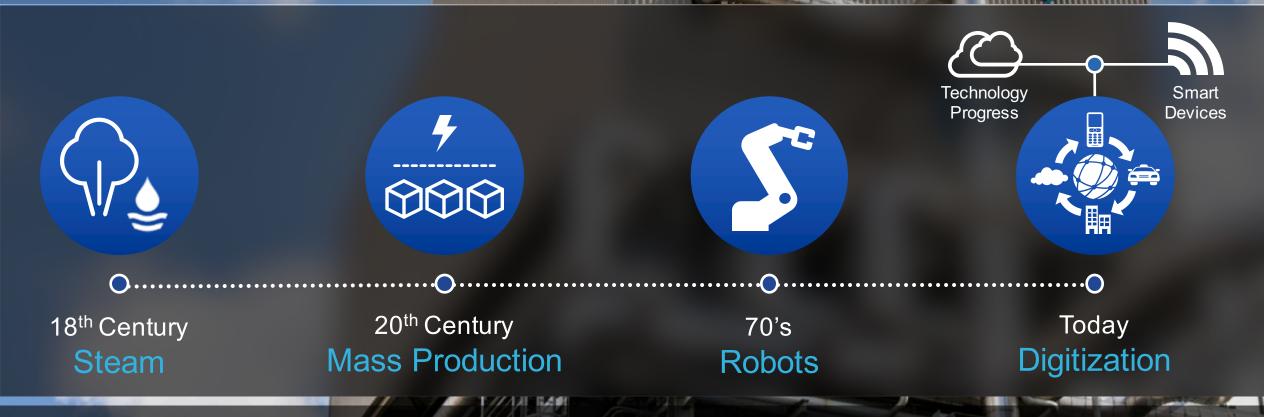
cisco

I(oT) in Process Networks

Bogdan Doinea – IoT Systems Engineer


bdoinea@cisco.com

14 October 2016


What is IoT?

IoT World Forum – Reference Model for IoT

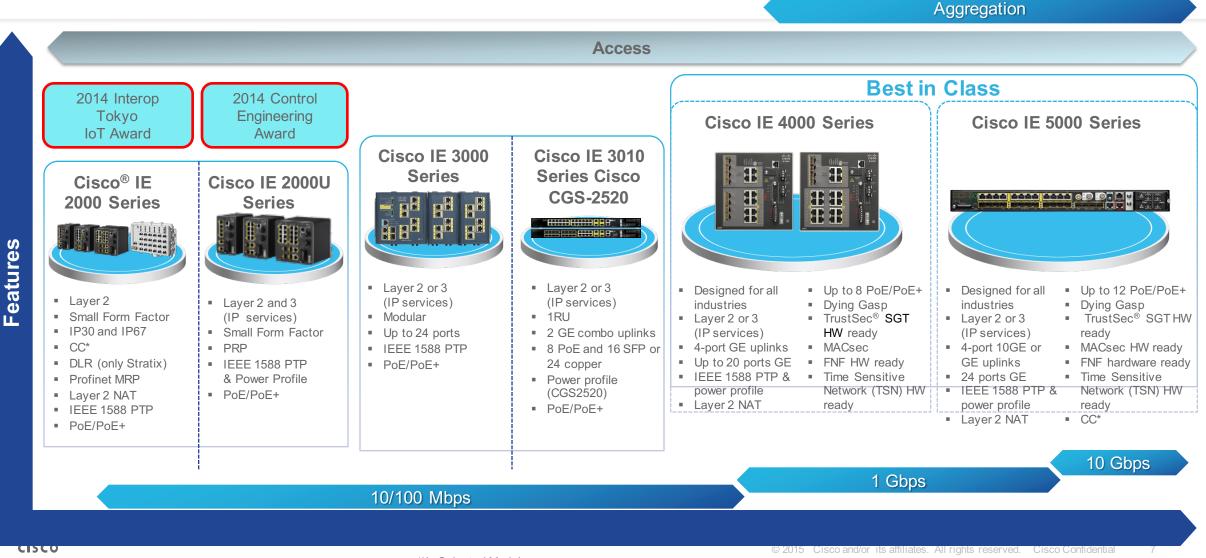
A New Industrial Revolution Digitizing Manufacturing to Capture the Value of the Internet of Everything

Digital Manufacturing Priority Investments #1 Analytics | #2 Connectivity | #3 Automation | #4 Mobility

Source: SCM World/Cisco "Smart Manufacturing & the Internet of Things 2015" survey of 400 Manufacturing Business Line Executives and Plant Managers across 17 vertical industries.

Connected Machines Deliver Business Outcomes

The Real Economic Value is Immense


CISCO. SCM World

Industry 3.0 to Industry 4.0

- Step 1: Connect the plant floor
- Step 2: Figure out how to gather the data from machines (protocol)
- Step 3: Figure out how to model the data (syntax)
- Step 4: Figure out how to use the data (semantics, analytics)
- Step 5: Have a very simple way to integrate (RESTAPI)

Cisco IE Switches Product Overview

Introducing the new IE1000

SKU	IE1K-copper	IE1K-PoE			
Downlinks	4 10/100M RJ45 6 10/100M RJ45	4 10/100M RJ45 (w/POE) 8 10/100M RJ45 (w/POE)			
Uplinks	(5port) 1 FE Copper (8port) 2 FE copper	2 GigE Fiber			
PoE	Ν	PoE/PoE+			
Total Ports	5 or 8	8 or 10			
Power Input	24 VDC nominal (9 – 36)	48/54 VDC nominal (44 – 57)			
Size (cm)	(5port) W3.81 x H12.7 x D11.5 (8port) W4.5 x H12.7 x D11.5	W4.5 x H12.7 x D13.3			
Console port	None				
Alarm input/output	No	Yes			
Temperature range	-20-60C	-40-70C			
Ingress Protection	IP30				

Target FCS Q4FY16

EFT Q3FY16

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

IE Switching Cauvery 15.2(4)EA Release

Industry Leading Redundancy

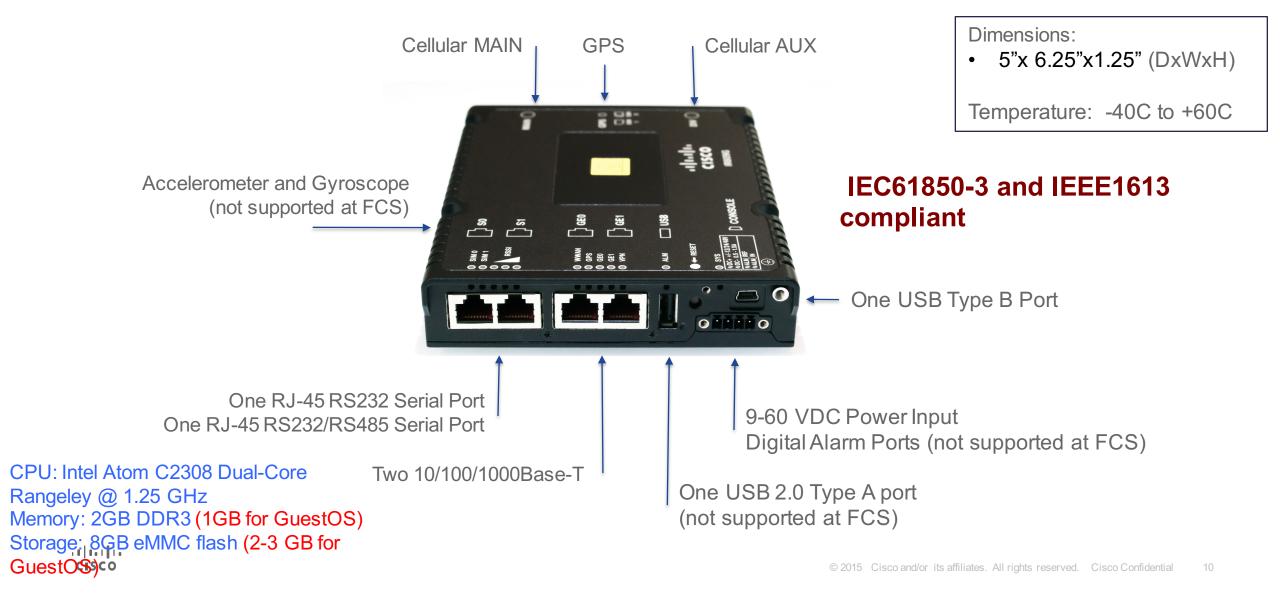
Media Redundancy Protocol (MRP) support on IE-2000 series

One Combined Release

 IE-4000 combined with IE-2000, IE-2000U IE-3000, IE3010, CGS2520

 \bullet

Usability Features


- NTP to PTP flywheel
- Identify/ Locate switch LED
- MODBUS TCP Server
- Express Setup enhancements
- Additional features
- PTP PDV filtering
- PTP feedforward boundary clock
- MIB: LLDP-EXT-PNO-MIB
- MACSEC: IE-4000

Certifications

- PROFINET MRP from PI (Profinet International) IE2000
- Profinet Stack V2.31
- FIPS & CC compliance

CISCO

Cisco 809 Industrial Integrated Services Routers

Industry 3.0 to Industry 4.0

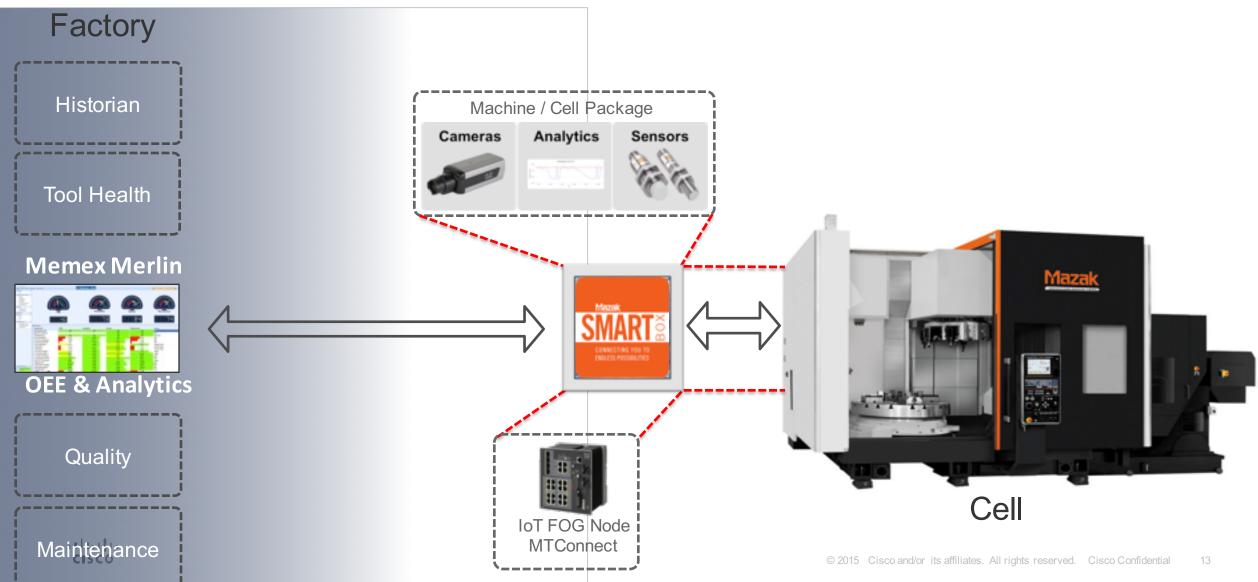
- Step 1: Connect the plant floor
- Step 2: Figure out how to gather the data from machines (protocol)
- Step 3: Figure out how to model the data (syntax)
- Step 4: Figure out how to use the data (semantics, analytics)
- Step 5: Have a very simple way to integrate (RESTAPI)

Machine Anatomy – Mazak i-400ST Identify machine components to collect data

General Motion Controller (GMC)

- GMC is considered as the brain of the machine
- Off the shelf motion controller from suppliers
- Usually perform single motion control at a time
- Typically consist of motion controller/drive amplifier/sensor
- A machine will only have GMC or CNC but not both
- 1 to 1 ratios between GMC/CNC and machine

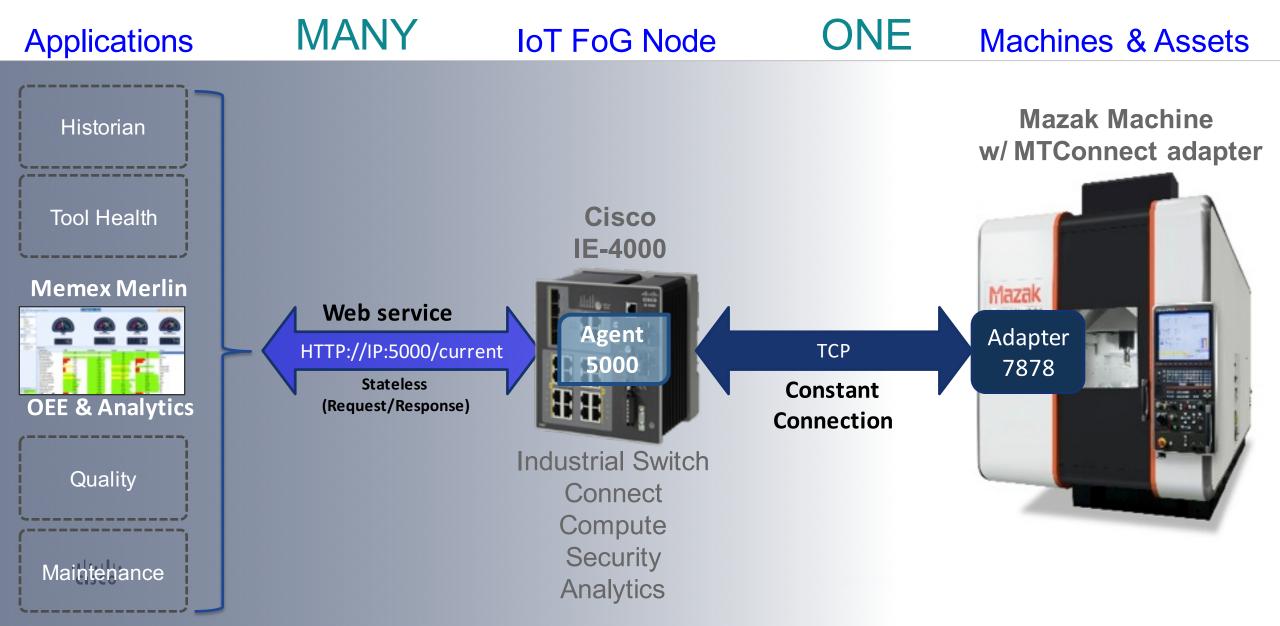
Computer Numerical Controller (CNC)


- CNC is a special type of GMC customized motion controller
- CNC are different from GMC that CNC also provide coordinated motion control and meet the special requirements of machine tool industry
- In a CNC based machine, the precision of motion control determines the overall system performance
- Typically consist of controller/servo drivers/spindle drives/HMI

Programmable Logic Controller (PLC)

- PLC functionalities include logic/drives/process control
- Work with GMC and CNC
- Pass G code to GMC/CNC to execute
- Many to 1 ratio between PLC and machine

Mazak SmartBox Use Case

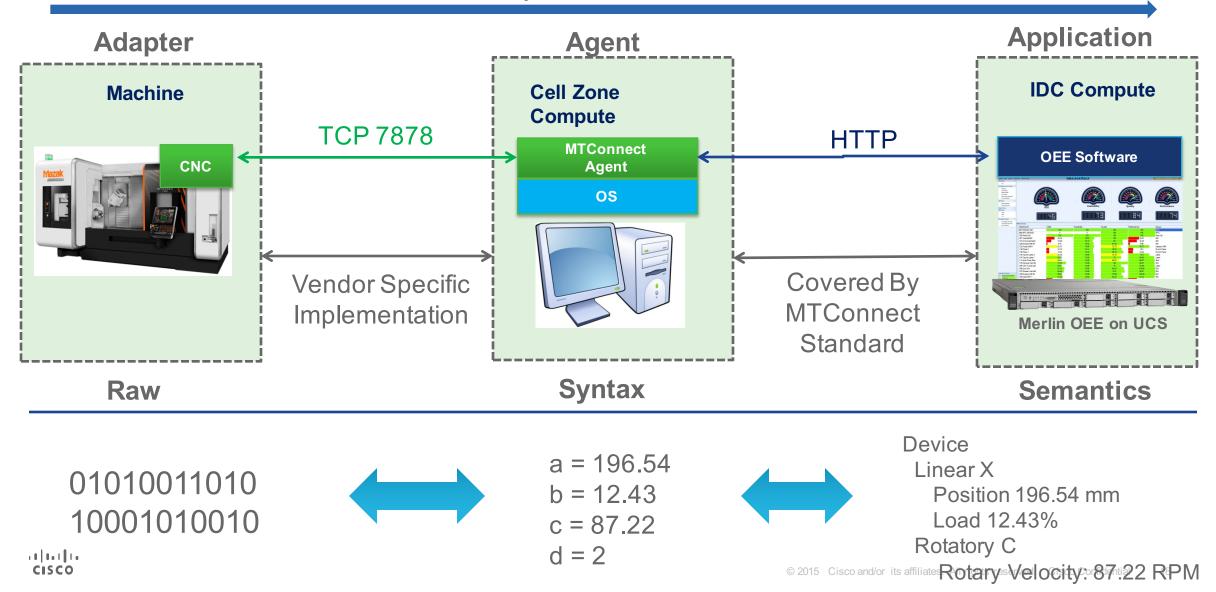


Merlin Dashboard							- = :
<u>U</u> tilities <u>H</u> elp <u>L</u> aunch Full	Screen Look and Feel						
Main Menu 🌣							
Exit							
Monitoring Screen Menus 🌣	51111 0 50 gg		TUNITUM TO THE STATE	summer and and		unin the second	
Efficiency Down/Reject	20 30 70 80 -		20 20 80 70 80	10 20 60 70 20 20 70 80		20 40 90 60 77 80	
Machine Detail					90 - =		
Data Tables Floor Layout Monitoring	OEE						
Event Monitoring			Availability	Quality		Performance	
Job Menu 🌣		<u>ה</u>			=	(ล
Job Queue Editor Visual Job Queue							
Report Menu 🌣							
Report Generator Auto Report Scheduler	Efficiency Screen						P 🔺
Slide Show	Machine ID	OEE	 Availability 	Quality	Performance	Group	
Setup	> 300:MTC SIM 1	80.32	80.32	100	100	lane1	
Start	110:Husky IMM 1	71.87	75.2	100	95.58	turret	
Stop	105:Twin Turret Lath	60.92	74.91	94.12	86.41	lathe	
RT Analytic Charts Down/Reject Pie Chart	104:Tnacci Lathe 22F	<u>60.71</u>	<u>60.71</u>	100	100	lathe	
Down/Reject Bar Chart	113:Gantry Mill M21	<mark>59.88</mark>	74.94	83.33	95.88	mill	
Run Time Chart	112:Doosan Mill 99	<u>59.88</u>	74.94	83.33	95.88	mill	
	101:Olympia Vert Mil	<u>53.</u> 88	75.04	69.23	103.72	mill	
	116:Cincinnati Gantr	<mark>46</mark> .31	75.01	76.32	80.91	mill	
	120:Gun Drill	<mark>4</mark> 3.63	64.98	79.45	84.52	drill	=
	103:Mori Seiki Lathe	<mark>4</mark> 2.38	74.25	66.67	85.62	lathe	
	119:Gap Lathe GL54	<mark>4</mark> 2.17	64.94	84.21	77.12	lathe	
	114:Doosan Mill 98	41.93	74.93	58.3 <mark>3</mark>	9 <mark>5.91</mark>	mill	
	121:Haas Mill 11	24.32	74.3	76.81	<mark>4</mark> 2.61	mill	
	124:Vert Mill VM34	15.53	74.93	<mark>58.3</mark> 3	35.54	mill	
	100:Auto Chop Saw	14.13	72.19	57.1 <mark>4</mark>	34.26	saw	
	303:OPC SIM 1	10.86	49.95	100	21.75		
Data Base Connection	500:ROYAL-MACHINE	2.23	28.75	100	7.76		
Server sqlsrv01	302:MAZAK SIM	0	0	100	0		
Status CONNECTED	× ፪ [Group] In (", 'drill', 'lan	a1' 'lathe' 'mill' 'sau		100			Edit Filter
14/08/22 - 01:15		er, laule, lilli, Sav	v, tunet)				

Industry 3.0 to Industry 4.0

- Step 1: Connect the plant floor
- Step 2: Figure out how to gather the data from machines (protocol)
- Step 3: Figure out how to model the data (syntax)
- Step 4: Figure out how to use the data (semantics, analytics)
- Step 5: Have a very simple way to integrate (RESTAPI)

Why MTConnect ? MTConnect Data Model is a Game Changer


What is Goal of MTConnect?

Translate Machines into Standard XML Semantics

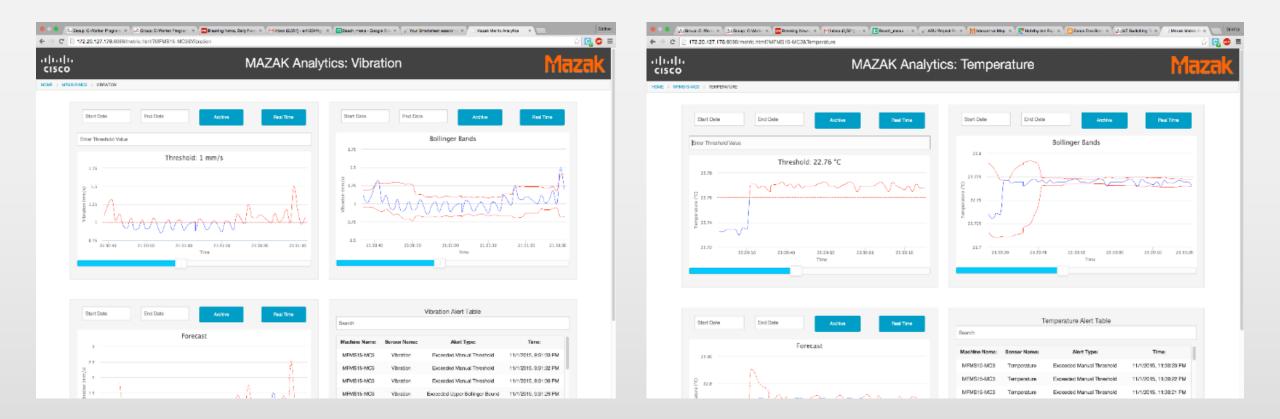
<CuttingTool serialNumber="1 " toolld="B732A08500HP" timestamp="2011-05-11T13:55:22" assetId="B732A08500HP.1" manufacturers="KMT"> <Description> Step Drill KMT, B732A08500HP Grade KC7315 Adapter KMT CV50BHPVTT12M375 Use Data BDX </Description> <CuttingToolLifeCycle> <CutterStatus><Status>NEW</Status></CutterStatus> <ProcessSpindleSpeed nominal="5893">5893</ProcessSpindleSpeed> DC3 <ProcessFeedRate nominal="2.5">2.5</ProcessFeedRate> DC2 <ConnectionCodeMachineSide>CV50 Taper</ConnectionCodeMachineSide> <Measurements> <BodyDiameterMax code="BDX">31.6</BodyDiameterMax> KAPR1 <BodyLengthMax code="LBX" nominal="120.825" maximum="126.325" minimum="115.325">120.825</BodyLengthMax> SDL1 SDI 2 <ProtrudingLength code="LPR" nominal="155.75" maximum="161.25" minimum="150.26">158.965</ProtrudingLength> <FlangeDiameterMax code="DF" nominal="98.425">98.425</FlangeDiameterMax> <OverallToolLength nominal="257.35" minimum="251.85" maximum="262.85" code="OAL">257.35 </Measurements> <CuttingItems count="2"> <CuttingItem indices="1" manufacturers="KMT" grade="KC7315"> <Measurements> <CuttingDiameter code="DC1" nominal= 8.5" maximum="8.521" minimum="8.506">8.513</CuttingDiameter> <StepIncludedAngle code="STA1" nominal="90" maximum="91" minimum="89">89.8551</StepIncludedAngle <FunctionalLength code="LF1" neminal="154.288" minimum="140.786" maximum="159.786">157.259</FunctionalLength> <StepDiameterLength code="SDL1" nominal="9">9</StepDiameterLength> <PointAngle code="SIG" nominal="135" minimum="133" maximum="137">135.1540</PointAngle> </Measurements> </CuttingItem> <CuttingItem indices="2" manufacturers="KMT" grade="KC7315"> <Measurements> <CuttingDiameter code="DC2" nominal="12" maximum="12:v11" minimum="12">11.999</CuttingDiameter> <FunctionalLength code="LF2" nominal="122.493" maximum="127.993" minimum="116.993">125.500</FunctionalLength> <StepDiameterLength code="SDL2" nominal="9">9</StepDiameterLength> </Measurements> </Cuttingltem> </CuttingItems> </CuttingToolLifeCycle> </CuttingTool>

MTConnect Architecture

Read-Only Data from Machines

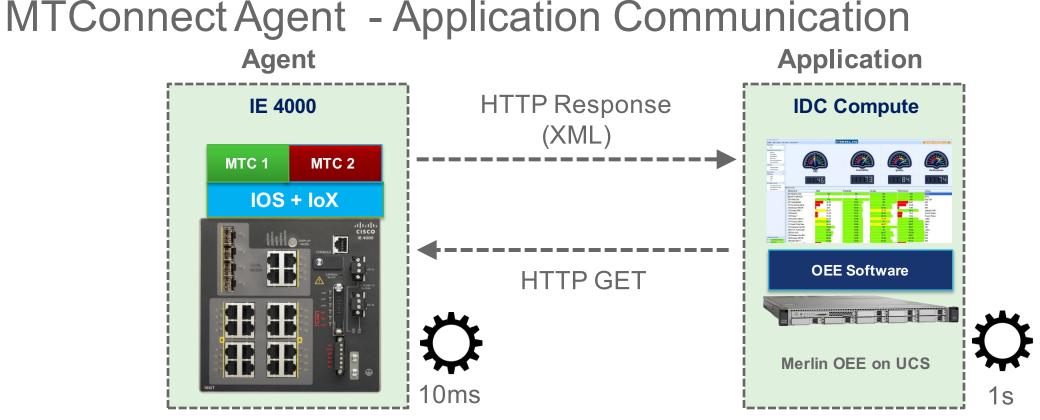
Industry 3.0 to Industry 4.0

- Step 1: Connect the plant floor
- Step 2: Figure out how to gather the data from machines (protocol)
- Step 3: Figure out how to model the data (syntax)
- Step 4: Figure out how to use the data (semantics, analytics)
- Step 5: Have a very simple way to integrate (RESTAPI)

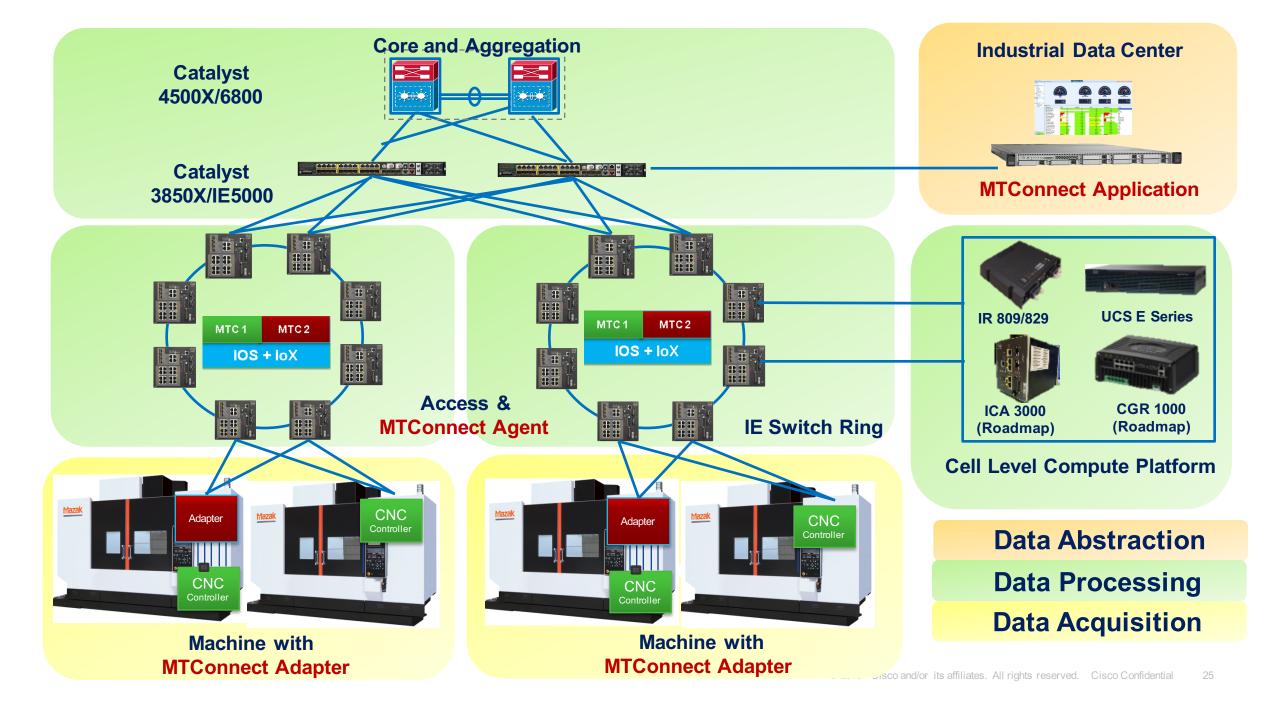


Cisco Parstream

- Sensor Inputs:
 - Coolant Level
 - Temperature
 - **PH**
 - Vibration
- Digital I/O Sensors look like MTConnect Adapter.
- Feeds Data to MTConnect Agent IoT Platform(ie-4000)
- Cisco Streaming Analytics can be tuned to be process specific
 - Pattern Matching
 - Predictive Analytics
 - Compound Signatures


Streaming Analytics on Mazak's Smart Box

Industry 3.0 to Industry 4.0


- Step 1: Connect the plant floor
- Step 2: Figure out how to gather the data from machines (protocol)
- Step 3: Figure out how to model the data (syntax)
- Step 4: Figure out how to use the data (semantics, analytics)
- Step 5: Have a very simple way to integrate (RESTAPI)

- Application makes an HTTP request -> Agent responses
- Communication use REST (Representational State Transfer)
- Agent is a special purpose HTTP server (open source available)
- Response in XML
- Store and forward with publish / subscribe semantics
 - Adapter collect machine data rapidly in the range of 10ms
 - Application collect data less frequently in the range of 1s
 - MTConnectagent need support data buffering © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

23

Concluding?

Big Stars

(For now) you just want to connect: IE2000 ->

You want your network to be Industry4.0 ready: IE4000 ->

You want to start gathering Machine Data NOW: IR829 ->

You want to start doing Analytics, fast, safe and at the edge -> Cisco CSA

Connected Machines Deliver Business Outcomes

The Outcome will be imense

Source: SCM World/Cisco "Smart Manufacturing & the Internet of Things 2015" survey of 400 Manufacturing Business Line Executives and Plant Managers across 17 vertical industries.

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 27